3,856 research outputs found

    Spectral Properties of Accretion Disks Around Black Holes II -- Sub-Keplerian Flows With and Without Shocks

    Full text link
    Close to a black hole, the density of the sub-Keplerian accreting matter becomes higher compared to a spherical flow due to the presence of a centrifugal barrier independent of whether or not a standing shock actually forms. This hot dense flow intercepts soft photons from a cold Keplerian disk and reprocesses them to form high energy X-rays and gamma rays. We study the spectral properties of various models of accretion disks where a Keplerian disk on the equatorial plane may or may not be flanked by a sub-Keplerian disk and the sub-Keplerian flow may or may not possess standing shocks. From comparison with the spectra, we believe that the observed properties could be explained better when both the components (Keplerian and sub-Keplerian) are simultaneously present close to a black hole, even though the sub-Keplerian halo component may have been produced out of the Keplerian disk itself at larger radii. We are able to understand soft and hard states of black hole candidates, properties of X-ray novae outbursts, and quasi-periodic oscillations of black hole candidates using these two component models. We fit spectra of X-ray novae GS1124-68 and GS2000+25 and satisfactorily reproduce the light curves of these objects.Comment: 15 Latex pages plus 12 figures. Macros included. Astrophysical Journal (In press

    Satellite observations of thought experiments close to a black hole

    Get PDF
    Since black holes are `black', methods of their identification must necessarily be indirect. Due to very special boundary condition on the horizon, the advective flow behaves in a particular way, which includes formation of centrifugal pressure dominated boundary layer or CENBOL where much of the infall energy is released and outflows are generated. The observational aspects of black holes must depend on the steady and time-dependent properties of this boundary layer. Several observational results are written down in this review which seem to support the predictions of thought experiments based on this advective accretion/outflow model. In future, when gravitational waves are detected, some other predictions of this model could be tested as well.Comment: Published in Classical and Quantum Gravity, v. 17, No. 12, p. 2427, 200

    Quantum spin glass and the dipolar interaction

    Full text link
    Systems in which the dipolar energy dominates the magnetic interaction, and the crystal field generates strong anisotropy favoring the longitudinal interaction terms, are considered. Such systems in external magnetic field are expected to be a good experimental realization of the transverse field Ising model. With random interactions this model yields a spin glass to paramagnet phase transition as function of the transverse field. Here we show that the off-diagonal dipolar interaction, although effectively reduced, destroys the spin glass order at any finite transverse field. Moreover, the resulting correlation length is shown to be small near the crossover to the paramagnetic phase, in agreement with the behavior of the nonlinear susceptibility in the experiments on \LHx. Thus, we argue that the in these experiments a cross-over to the paramagnetic phase, and not quantum criticality, was observed.Comment: To appear in Phys. Rev. Let

    Ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV above threshold

    Full text link
    We present here triple differential cross sections for ionization of hydrogen atoms by electron impact at 1eV, 0.5eV and 0.3eV energy above threshold, calculated in the hyperspherical partial wave theory. The results are in very good agreement with the available semiclassical results of Deb and Crothers \cite{DC02} for these energies. With this, we are able to demonstrate that the hyperspherical partial wave theory yields good cross sections from 30 eV \cite{DPC03} down to near threshold for equal energy sharing kinematics.Comment: 6 pages, 9 figure

    Magneto-transport in a mesoscopic ring with Rashba and Dresselhaus spin-orbit interactions

    Full text link
    Electronic transport in a one-dimensional mesoscopic ring threaded by a magnetic flux is studied in presence of Rashba and Dresselhaus spin-orbit interactions. A completely analytical technique within a tight-binding formalism unveils the spin-split bands in presence of the spin-orbit interactions and leads to a method of determining the strength of the Dresselhaus interaction. In addition to this, the persistent currents for ordered and disordered rings have been investigated numerically. It is observed that, the presence of the spin-orbit interaction, in general, leads to an enhanced amplitude of the persistent current. Numerical results corroborate the respective analytical findings.Comment: 7 pages, 7 figure

    Quantum fluctuation induced ordered phase in the Blume-Capel model

    Full text link
    We consider the Blume-Capel model with the quantum tunneling between the excited states. We find a magnetically ordered phase transition induced by quantum fluctuation in a model. The model has no phase transition in the corresponding classical case. Usually, quantum fluctuation breaks ordered phase as in the case of the transverse field Ising model. However, in present case, an ordered phase is induced by quantum fluctuation. Moreover, we find a phase transition between a quantum paramagnetic phase and a classical diamagnetic phase at zero temperature. We study the properties of the phase transition by using a mean field approximation (MFA), and then, by a quantum Monte Carlo method to confirm the result of the MFA.Comment: 7 pages, 6 figures, corrected some typo

    Diversity Combining Using Carrier Lock and Sideband Lock Techniques Part II

    Get PDF

    A Novel Quantum Transition in a Fully Frustrated Transverse Ising Antiferromagnet

    Get PDF
    We consider a long-range Ising antiferromagnet (LRIAF) put in a transverse field. Applying quantum Monte Carlo method, we study the variation of order parameter (spin correlation in Trotter time direction), susceptibility and average energy of the system for various values of the transverse field at different temperatures. The antiferromagnetic order is seen to get immediately broken as soon as the thermal or quantum fluctuations are added. We also discuss the phase diagram for the Sherrington-Kirkpatrick (SK) model with the same LRIAF bias, also in presence of a transverse field. We find that while the antiferromagnetic order is immediately broken as one adds an infinitesimal transverse field or thermal fluctuation to the system, an infinitesimal SK spin glass disorder is enough to induce a stable glass order in the antiferromagnet. This glass order eventually gets destroyed as the thermal or quantum fluctuations increased beyond their threshold values and the transition to para phase occurs. Indications of this novel phase transition are discussed. Because of the presence of full frustration, this surrogate property of the LRIAF for incubation of stable spin glass phase in it (induced by addition of a small disorder) should enable eventually the study of classical and quantum spin glass phases by using some perturbation theory with respect to the disorder.Comment: 9 pages, 5 figure

    Use of Laguerre Filters for Realisation of Time Functions and Delay

    Get PDF
    corecore